SYNTHESIS OF α , β -UNSATURATED ALDEHYDES VIA 1-AMINOPROPA-1, 2-DIENES: MECHANISTIC STUDIES

J. Cymerman Craig and Nnochiri N. Ekwuribe

Department of Pharmaceutical Chemistry, School of Pharmacy
University of California, San Francisco, California, 94143, U.S.A.

Summary: A facile prototropic rearrangement of N-(prop-2-ynyl)amines to 1-aminopropa-1,2-dienes, followed by acid hydrolysis, affords a novel synthesis of α , β -unsaturated aldehydes. The mechanism of the reaction has been examined by deuterium labeling.

Heterosubstituted allenes are of interest as synthetic precursors to α , β -unsaturated aldehydes, and acid hydrolysis of alkoxyallenes has been reported to produce the desired ethylenic carbonyl compounds. We have examined a number of the corresponding allenic enamines 2 (Scheme 1) obtained from the tertiary N-(prop-2-ynyl)amines 1^2 (Table 1) by metallation with n-butyl lithium at -76°C followed by protonation with methanol at 0°C.

The allenic structures 2 were confirmed by their ir (1950 cm⁻¹, HC = C = CH), nmr (two down-field doublets with J = 6 Hz due to two vinylic protons) and mass spectra. We found that hydrolysis of the enamines 2 with aqueous acetic acid (Scheme 1) proceeded quantitatively to give the pure α, β -unsaturated aldehydes 3 in high overall yield (Table 1). The mechanism of the hydrolysis was examined using deuterium labeling (Table 1).

Hydrolysis of the allenic enamine 2a with acetic acid - 0 - d_1 in D_2O gave (Table 1) cinnamaldehyde - 2- d_1 (3b). The fact that the aldehyde proton appeared as a singlet (9.72 ppm) indicated that labeling of C-2 with deuterium was complete. Protonation of the lithio-derivative (from 1a) with methanol - 0 - d_1 led to the allenic enamine 2b containing only the vinylic proton at C-1. Hydrolysis of 2b using aqueous acetic acid afforded cinnamaldehyde-3- d_1 (3c) showing the aldehydic proton as a doublet, while reaction of 2b with acetic acid-0- d_1 in D_2O yielded cinnamaldehyde-2,3- d_2 (3d), with the aldehyde proton appearing as a singlet.

Similar results were obtained using N-(3-phenylprop-2-ynyl)morpholine (1b) or N-(hept-2-ynyl) piperidine (1c) as starting materials (Table 1). Alkylation of the lithio-derivative from 1b

Table 1

		I								
R ₁ R ₂ R ₃ -		Overall Yield (%)	88	88	88	88	88	68	86	86
	de ,3	R ₂	#	Д	* * #	Q	H	н	ж	A
	1 Aldehye	^R L	æ	н	*¤	*	Н	н	н	Д
	α,β-Unsaturated Aldehyde	Compound	3a7	∉≀	દ્ધ≀	.8₹	s₹	3£8	ეგე გემ	. ક્ષ ≀
	8° ×	Reagents Used	ej .	Ŧ	ø	Ŧ	ø	ø	aJ	£
R − 0 - 0 - R − 1	22₹	R ₃	н	н	Q	D	н	H	GH ₃	GH.3
α-υ - - -	i	R ₁	Ħ	н	н	Н	н	Ħ	н	A
×	1-Aminopropa-1,2-diene	Compound	2g	2a ₹	2b	25 ₹	2 5	2d 2d	5e	2f
لم 	1-7	Reagents Used	a,b	a,b	a,d	a,d	a, b	a,b	၁, ရ	a,c then
N-CH2-C C C	N-(Prop-2-ynyl)amine 1	R ₄	c ₆ H ₅	$c_{6^{H}5}$	c ₆ H ₅	$c_{6^{\mathrm{H}}5}$	$c_{6^{\mathrm{H}}5}$	–c ₄ H ₉	c ₆ H ₅	c_{6} H $_{5}$
× ×	-2-ynyl)		CH ₂	CH_2	$_2^{\rm CH}$	$c_{\rm H_2}$	0	сн2 г	0	0
	N-(Prop	Compound X	la Sa ∑	La S T T T	S. S.	Z Z	ິ≘≀	ુર ≀	11	#3

Reagents used: a, n-C₄H₉L1/hexane; b, CH₃OH; c, (CH₃)₂SO₄; d, CH₃OD; e, CH₃COOH/H₂O; f, CH₃COOD/D₂O; *0.4 D **0.3 D

a,c a,c then a,d

Scheme 2

$$N-CH_2-C \equiv C-R_4 \xrightarrow{\alpha} \left[N-CH=C=\overline{C}-R_4 \right] Li^+$$

$$\underline{1}$$

$$\frac{d}{\sqrt{\frac{C}{N}}} = \frac{1}{N} = \frac{1}{$$

$$\begin{array}{c}
f \\
N-CH-\overline{C} = CD-R_4 \\
D-O-D \\
+
\end{array}$$

$$N-CH-CD=CD-R_4$$
 $D-O$
 $D O$
 $D O$

$$\longrightarrow ND + O = CH - CD = CD - R_4$$

$$\underline{3}$$

Reagents used: a,

n - C₄H₉Li/hexane

d,

CH₃OD

f,

CH3COOD/D2O

with dimethyl sulfate at -76°C gave the allenic enamine N-(3-phenylbuta-1,2-dienyl)morpholine (2e), converted by acetic acid hydrolysis into 3-methylcinnamaldehyde (3g). Metallation of 2e followed by deuteration with methanol-0-d₁ gave N-(3-phenylbuta-1,2-dienyl)morpholine-1-d₁ (2f), hydrolysis of which with acetic acid-0-d₁ in D₂O afforded 3-methylcinnamaldehyde-1,2-d₂ (3h), shown by nmr analysis to be completely deuterated at C-1 and C-2.

The results of the deuterium labeling experiment shown in Table 1 support the mechanism summarized in Scheme 2 for the hydrolysis of the allenic enamines. The observed occurrence of 0.3 D at C-2 in the product 3c (Table 1) is explained by partial exchange of acetic acid with methanol-0-d₁ still present in the solution from the previous step. The finding of 0.4 D at the aldehydic proton (C-1) in both 3c and 3d (Table 1) suggests that the allenic enamine 2b undergoes partial metallation at C-1 by the lithium methoxide produced in the previous step (1 + 2) and is then rapidly deuterated by excess methanol-0-d₁.

In addition to the preparative ease and high yield of the method, the possibility of specifically introducing label into the C-2 and C-3 positions of the product has synthetic utility.

References and Notes

- (a) Y. Leroux and R. Mantione, Tetrahedron Lett., 591 (1971); (b) E. J. Corey and S. Terashima, Tetrahedron Lett., 1815 (1972).
- 2. Readily obtained from the corresponding commercially available propargyl alcohols <u>via</u> their bromo-derivatives by reaction with piperidine or morpholine.
- 3. All compounds gave ir, nmr and mass spectra in full agreement with proposed structures.
- 4. Some of the original N-(prop-2-ynyl)amine 1 was present and was readily removed by washing with dilute acid. All yields refer to the pure aldehyde.
- 5. H. J. Reich and S.K. Shah, J. Amer. Chem. Soc., 99, 263 (1977).
- 6. S. Shatzmiller and A. Eschenmoser, Helv. Chim. Acta, 56, 2975 (1973).
- 7. The p-nitrophenylhydrazone had m.p. and mixed m.p. 190-191°; J.M. Lalancette, G. Rollin and A. P. Dumas, Can. J. Chem., 50, 3058 (1972).
- 8. The p-nitrophenylhydrazone had m.p. and mixed m.p. 150-152°; P. Gygax, T.K. DasGupta and A. Eschenmoser, Helv. Chim. Acta, 55, 2205 (1972).
- 9. The 2,4-dinitrophenylhydrazone had m.p. and mixed m.p. 210-212°; R.C. Cookson and N.W. Hughes, J. Chem. Soc. Perkin I, 2738 (1973).

(Received in USA 5 March 1980)